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Abstract

A method to describe the behaviour of an oscillating bubble near a free surface and a floating structure is described in

this article using the boundary integral method. The free surface is modelled using a negative image of the bubble (and

the submerged part of the structure) pertinent to a reasonably deep underwater explosion where the free surface remains

almost flat. This approach obviates the need to model the free surface separately. Several examples are provided to

show the combined complex interaction of the attraction of the bubble towards the solid surface, the repulsion by the

free surface and the influence of gravity.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Bubbles have intrigued mankind for centuries and many problems relating to bubble dynamics remain unsolved or

are not yet well understood up to the present day (Prosperetti, 2004). Oscillating bubbles can be found in many fields of

engineering ranging from cavitation on ship propellers, underwater explosions to even micro bubbles in medical

treatments. Initially, spherical symmetrical bubble oscillations were investigated, see for example Rayleigh (1917).

Much later, it was discovered that in many cases the bubble assumes a nonspherical symmetric configuration during the

collapse phase. Several experimental and numerical studies have clearly shown that if a bubble oscillates near a solid

surface (if buoyancy can be neglected and in a stationary ambient flow), a jet will be formed in the bubble; see for

example Naude and Ellis (1961), Benjamin and Ellis (1966), Plesset and Chapman (1971), Blake et al. (1986), Chan et al.

(2000) or Zhang et al. (2001). This jet originates from the side that is facing away from the solid and traverses the bubble

with great speed until it impacts on the opposite bubble wall. The bubble will be slightly repelled from the solid surface

during its expansion phase and strongly attracted towards it during its collapse phase.

On the other hand, if a bubble oscillates near a free surface, again under the assumption of zero buoyancy and no

ambient flow, a jet directed away from this surface can be formed during the collapse phase of the bubble; see for

example Chahine (1977), Blake and Gibson (1981, 1987), Longuet-Higgins (1983), Blake et al. (1987) or Wang et al.

(1996a, b). The bubble as a whole will be repulsed by the free surface. Even in the absence of any surface in the vicinity
e front matter r 2005 Elsevier Ltd. All rights reserved.
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of the bubble, a jet still can be formed in large bubbles due to the effect of gravity. This jet will always be directed

upwards (in opposite direction to the gravity vector); see Wang et al. (2003) for an example. For an overview of the

phenomena discussed above, see Blake and Gibson (1987). To the best knowledge of the authors, the dynamics of a

bubble depicting the combined effects of a free surface, solid surface and gravity have not yet been reported in the

literature. This situation can typically occur when an underwater explosion occurs near a floating ship. In this article a

method based on the boundary integral method (BIM) will be introduced and broadly described. For greater details or

a review on the use of the BIM in bubble dynamics the reader is referred to: Taib (1985), Blake et al. (1986, 1987),

Harris (1992), Chahine (1994), Zhang et al. (1998, 2001) or Wang et al. (2003) to name a few. In this work, the proposed

modification of the BIM method makes use of the fact that the free surface can act as a negative mirror if the free

surface remains relatively flat during the underwater explosion. The above assumption is valid for a reasonably deep

submerged explosion bubble.

The outline of the paper is as follows. In Section 2 the basic equations that govern the dynamics of the bubble will be

described. Some examples are given of bubbles oscillating near free surfaces. Special emphasis is placed on the second

oscillating phase, which has often been ignored in previous works. Also the effects of gravity are investigated in this

section. In Section 3 the theoretical framework for the proposed ‘negative mirror’ method is given. A comparison is

given with an existing axial symmetrically code which produces nearly identical results. In Sections 2 and 3, no floating

structure has been introduced yet. In Section 4 the dynamics of (large) bubbles near a free surface and a (fixed) floating

structure are investigated. Several examples showing very complex bubble behaviour can be observed under certain

circumstances.
2. Basic equations

2.1. Fluid dynamics equations

Consider an incompressible fluid with an oscillating bubble with its centre at an initial distance H away from a free

surface. The free surface is initially quiescent (corresponding to a value of the z co-ordinate of 0.0, with z pointing into

the water). We shall further assume that the fluid is irrotational and that viscous effects can be neglected (since the flow

is at high Reynolds number and is essentially inertia driven). As such, a velocity potential F can be introduced that

obeys the following equation for the velocity vector: v ¼ rF (bold variable here and elsewhere are taken as vectors in

this work). This equation together with the continuity equation r � v ¼ 0 leads to the Laplace equation which is valid

anywhere in the fluid

r2F ¼ 0. (1)

The Laplace equation is an elliptic equation, hence implying that the solution is known anywhere in the fluid domain,

if either the potential F (Dirichlet condition) or the normal velocity U ¼ qF=qn
� �

(Neumann condition) is given on the

boundaries of the problem. The time-dependent Bernoulli equation, which drives the problem of interest, can be applied

anywhere in the fluid

p ¼ pATM � r
DF
Dt
þ
1

2
r vj j2 þ rgz, (2)

where p is the pressure, pATM is the atmospheric pressure, r is the density of the fluid, g is the gravity acceleration and z

is the vertical coordinate in the direction of the gravity vector. The material derivative D/Dt with respect to velocity v is

used in (2) and is defined as Dx/Dt ¼ @x/@t+v � rx. At the free interface the pressure is equal to the atmospheric

pressure (if surface tension effects are neglected, which can be done for the large bubbles under consideration), thus

r
DF
Dt
¼

1

2
r vj j2 þ rgz ðon free interfaceÞ: (3)

Note that in Section 3 a simplified model will be introduced which replaces Eq. (3). Inside the bubble, the pressure pg

is supposed to be spatially uniform and is governed by the adiabatic formula

pg ¼ pg;0

V0

V

� �g

. (4)

Here V is the volume of the bubble and pg,0 and V0 are the pressure and volume at the time of inception of the bubble,

respectively. The ratio of the specific heats g equals 1.25 for underwater explosions with TNT, Cole (1948). The value

g ¼ 1:25 has been chosen throughout this work. Combining (2) and (4) leads to the following equation for the potential
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at the bubble surface:

r
DF
Dt
¼ pATM � pg;0

V0

V

� �g

þ
1

2
r vj j2 þ rgz ðon bubble surfaceÞ: (5)

At t ¼ 0 the potential is set to a value of zero at all boundaries (bubble, free surface and solid surface if present)

F t ¼ 0ð Þ ¼ 0. (6)

The free surface is assumed to be initially flat and quiescent at z ¼ 0. The bubble is also assumed to be spherically

symmetric with an initial radius R0 and its centre is located at z ¼ H at t ¼ 0. For any structure the following zero

normal velocity constraint is applied at all times:

qF
qn
¼ U ¼ 0 ðon a structureÞ: (7)

Eq. (7) implies that the structure is fixed, but it can easily be extended to include moving or deforming structures by

setting U to an imposed or evaluated non zero value.
2.2. The explosive

For an explosive, the charge weight (W as expressed in kg) and the depth at which it explodes (H as expressed in m)

are generally known. The relationship between these two parameters and the initial radius for the numerical

calculations (R0) and the maximum bubble radius (Rm) will be established now. At the same time an expression for the

initial gas pressure inside the bubble just after the explosion pg,0 will be obtained. For a TNT-charge, an empirical

relationship between W, H and Rm exists [see Cole (1948) or Rungsiyaphornrat et al. (2003)]. This is given as

Rm ¼ 3:38
W

H þ 10

� �1=3

. (8)

The maximum volume of the bubble will thus be linearly dependent on the charge weight and inversely proportional

to the hydrostatic pressure (the factor ‘10’ in (8) originates from the atmospheric pressure). Another empirical

relationship for the initial pressure of the explosion products (TNT-explosives) is

pg;0 ¼ 1:39� 105
W

V0

� �g

. (9)

The equation of motion for a spherically symmetric bubble oscillating at a depth H (the so-called Rayleigh–Plesset

equation) is

pg � pATM � rgH ¼
3

2
r

dR

dt

� �2
þ rR

d2R

dt2
. (10)

In this equation, surface tension effects, vapour pressure and compressibility of the fluid have been neglected. This

equation will be used to obtain the radius of the bubble R0 at t ¼ 0. Eq. (10) can be solved using (4) and the following

relationship for the bubble surface velocity can be found

3

2
r

dR

dt

� �2

¼ pATM þ rgH
� �

�1þ
R0

R

� �3
" #

�
pg0

g� 1

R0

R

� �3g

�
R0

R

� �3
" #

. (11)

This equation can be easily shown to be correct by substituting (11) and its derivative with time back into (10). Note

that Eq. (11) is only valid for values of ga1. If g ¼ 1, the bubble’s contents behave as an isothermal gas and another

relationship similar to (11) has to be used. At R ¼ R0 the bubble surface velocity is 0, as it is initially at rest. Using the

fact that at R ¼ Rm the bubble velocity should also be zero for a spherical bubble, an equation from which R0 can be

solved is obtained with (8) and (9). This is carried out by a root solving procedure for R0

pATM þ rgH
� �

�1þ
R0

Rm

� �3
" #

¼
1:39� 105

g� 1

3W

4pR3
0

 !g
R0

Rm

� �3g

�
R0

Rm

� �3
" #

. (12)

It should be noted that the R0 obtained here is a purely numerical quantity and, in general, does not relate directly to

the initial size of the explosive. The initial gas pressure pg,0 can be calculated with (9).
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2.3. Dimensionless equations

The foregoing equations can be made dimensionless. The most suitable scaling factor for length is the maxi-

mum bubble radius Rm obtained from (8). The reference pressure is taken to be the ambient pressure at the

depth H,

pRef ¼ pATM þ rgH. (13)

The other scaling factors for time and potential are chosen to be, respectively, Rm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=pRef

p
and Rm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pRef=r

p
. Eq. (3)

can now be written in dimensionless form

DF0

Dt0
¼

1

2
r0F0
�� ��2 þ dz0 ðon free surfaceÞ: (14)

On the bubble surface (5) becomes

DF0

Dt0
¼ 1� �

V 00
V 0

� �g

þ
1

2
r0F0
�� ��2 þ d z0 �H 0ð Þ ðon bubble surfaceÞ: (15)

The dimensionless parameters introduced above are the strength parameter e, the buoyancy parameter d and the

depth parameter H0:

� ¼
pg;0

pRef

, (16)

d ¼
rgRm

pRef

, (17)

H 0 ¼
H

Rm

. (18)

On the solid surface (if present) the zero normal velocity boundary condition applies, or equivalently

U 0 ¼ 0 ðon solid surfaceÞ: (19)

Using (17) and (13) and noting that H should not be much smaller than Rm (otherwise the bubble would vent to the

surface at an early stage), it can reasonably be assumed that d takes on a value between 0 and 1. If d�0, the effects of
gravity can be neglected. For underwater explosions, d has a typical value of about 0.25 and can certainly not be

neglected. Eq. (12) can be rewritten in dimensionless form

�1þ R0
3
0 ¼

�

g� 1
R0

3g
0 � R0

3
0

h i
. (20)

The parameters e, R00and g are related to each other by (20) and only two of them can be chosen freely. Finally, for the

kinematic surface velocity (on the bubble and on the free surface) we have:

Dx0

Dt0
¼ r0F0. (21)

This equation is used to update the position vectors of the nodes of the bubble at every time step.

2.4. Toroidal bubbles

During the collapse phase of the bubble, usually a liquid jet is created that traverses across the bubble with very high

speed. If the liquid jet impacts on the opposite face of the bubble, the fluid domain becomes doubly connected.

Numerically, two challenges arise when this happens. First of all, some re-meshing has to be performed in order to

connect the fluid of the jet and the fluid on the far side of the bubble. In an axial symmetrical configuration this is

quite straightforward [see Blake et al. (1997) or Wang et al. (1996b)], but it can be rather complex for Three-

dimensional (3-D) models [see Zhang et al. (2001) for more details on the ‘surgical cut’ in a 3-D configuration].

Furthermore the jet impact will generate a circulation in the fluid. Zhang and Duncan (1994) have modelled this

circulation by introducing a vortex sheet that moves with the fluid. This vortex sheet can become highly distorted as the

bubble evolves. A simpler model consists of placing a vortex ring inside the bubble enclosing the jet. The strength of this

vortex ring is chosen to be equal to the potential difference of the jet and the opposite bubble surface just before the jet

impacts. The potential is now decomposed in to two parts, one corresponding to the circulation of the jet impact (C0)
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and a remainder (j0),

F0 ¼ C0 þ j0 (22)

The potentialC0 exhibits a jump across the vortex ring; the potential j0 is smooth throughout the whole fluid domain.

An analytical solution can be found for the velocity field generated byC0. The exact position of the vortex ring does not

influence the outcome of the numerical solution, as long as it is not placed too near to the surface of the bubble (to

avoid numerical instabilities). For more details the reader is referred to Zhang et al. (2001). The boundary integral

equation (as introduced in Section 2.5 or Section 3) is now solved for j0 with associated modifications in (14) and (15).

Furthermore, the normal velocity on any solid surface in (19) must be replaced by the negative value of the normal

velocity caused by C0, in order to keep the total normal velocity equal to zero.

2.5. Boundary integral simulations for axial-symmetrical problems

The solution of the Laplace equation (1) is fully determined by its boundary conditions. This means that, once the

boundary conditions are set, the solution is known everywhere (in principle). The boundary element method takes

advantage of this principle, by reducing the Laplace equation into an integral equation. The dimension of the problem

under consideration will be reduced by one. This greatly reduces the number of grid points needed (one only needs grid

points on the boundaries and none inside the fluid domain). It is also easier to follow any moving boundary (such as the

bubble’s interface or the free surface) using this approach.

Many numerical results concerning the axisymmetrical configuration of an oscillating bubble near a free surface have

appeared in previous works. For small bubbles, where gravity can be neglected, Robinson et al. (2001) simulated bubbles at

the dimensionless distance of H 0 ¼ 0:95 and 0.56. Wang et al. (1996a) simulated bubbles with a stand off distance of

H 0 ¼ 1:5, 1.0, 0.7 and 0.5 (with neglect of gravity). From all these results, it can be concluded that a downwards directed jet

is induced during the bubble collapse phase while at the same time a water plume is created at the free surface. The plume

height is very sensitive to H0. It was also observed that the oscillation time of a bubble is reduced when compared to the

equivalent of a free field bubble. On the other hand, the oscillation time increases for a bubble located near a solid surface

as compared to a free field bubble [see Klaseboer and Khoo (2004)]. As we will see later, this is an important consideration

for the sequence of events to occur relating to a bubble oscillating near a free surface and a solid surface at the same time.

Other experimental results can be found in Blake and Gibson (1981), where very clearly the upwards directed water plume

at the free surface and the downwards jet in the bubble can be observed. For all these studies on a single bubble and free

surface, attention was not directed on the second expansion phase of the bubble. Therefore, we will investigate two cases

where some emphasis will be on this second expansion phase (i.e. the expansion after its initial contraction/collapse phase).

We will do so, by taking into account the effect of buoyancy through the parameter d, which is nonnegligible in

underwater explosions. As observed in several works [for example Wang et al. (1996b)], gravitational effects can take

precedence over the dynamics of the bubble and the jet can be directed in the upwards direction, instead of the usual

downwards direction. Two cases with the inclusion of gravity effects can be found in Figs. 1 and 2. The parameters are

� ¼ 500 and H 0 ¼ 1:1. The axisymmetrical numerical code of Wang et al. (1996a, b) is employed here. In Fig. 1, d has a

value of 0.25 and in Fig. 2, d takes on a value twice as large, namely 0.5. A broad comparison of the expansion phases of

the bubbles in Figs. 1(a) and 2(a) shows that the results are fairly similar, except that the bubble expands more and cuts

across the line z0 ¼ 0 for the larger d ¼ 0:5. The collapse phase is, however, completely different for the two cases. For

d ¼ 0:0, the jet in the bubble would be directed downwards (results not shown here). A closer scrutiny of Fig. 1(a) reveals

the existence of an upwards and downwards directed jet at the same time. The downwards directed jet is induced by the

effect of the free surface, while the upwards directed jet is induced by gravity (gravity in most cases is responsible for a jet

directed in the opposite direction of the gravity vector for large oscillating bubbles). These two jets impact on each other

slightly below the centre of the bubble at t0 ¼ 1:533. It is interesting to note the event after the bubble enters its second

expansion phase; a ring shaped elevation occurs on the free surface in Fig. 1(b). For an even larger value of d at 0.5 in

Fig. 2(a), the jet inside the bubble is directed upwards. In this case gravity effects completely dominate the dynamics of

the bubble. The bubble in Fig. 2(b) moves much faster towards the free surface in its second expansion phase than that in

Fig. 1(b). It is highly likely that instabilities will occur at the thin interface between the bubble and the free interface and

next lead to the venting phenomenon. This, however, is outside the scope of the current investigations.

In Fig. 3, the plume height as a function of H0 is given for several values of d. The plume height has been taken as the

maximum value of the surface along the axis of symmetry during the first expansion and collapse phase. A very sharp

rise in the plume height can be observed for values of H0 smaller than 1. For values of H0 lower than, say 0.75, the

observed plume height is larger than the maximum bubble radius (which is 1.0 for this dimensionless figure). The plume

height rapidly decreases for increasing values of H0. The influence of gravity (through d) is observed to be less

important, compared to the very sharp rise of the height of the plume as a function of H0.
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Fig. 1. Axially symmetric simulation of a bubble situated at an initial depth of H 0 ¼ 1:1 with parameters e ¼ 500 and d ¼ 0.25. (a)

Bubble in its first expansion and collapse phase at t0 ¼ 0:000, t0 ¼ 0:829 and t0 ¼ 1:533. (b) Bubble in its second expansion phase at

t0 ¼ 1:551, t0 ¼ 1:653, t0 ¼ 1:857 and t0 ¼ 2:060.
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The two examples of Figs. 1 and 2 are provided to illustrate the complexities of the bubble dynamics and the

associated free surface behaviour. These are dependent on the bubble depth H0, the strength of the bubble, e and the

buoyancy parameter d (which takes into account the effects of gravity). In this section, no solid surface was introduced

yet; this will be done in the next section.
3. Simplified model using negative mirror images to represent the free surface

3.1. Theory

The axial symmetrical formulation of Section 2.5 has many limitations if the effects of an underwater explosion near

a 3-D floating structure are to be investigated as few realistic or interesting problems will have the required axial

symmetry. Therefore, it is necessary to develop a fully 3-D version of the BIM method, which includes the effects of the
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Fig. 2. As for Fig. 1, but with d ¼ 0:50. The parameters are � ¼ 500 and H 0 ¼ 1:1. (a) Bubble in its first expansion and collapse phase

at t0 ¼ 0:000, t0 ¼ 0:825 and t0 ¼ 1:548. (b) Bubble in its second expansion phase at t0 ¼ 1:648, t0 ¼ 1:748, t0 ¼ 1:952 and t0 ¼ 2:152.
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free surface. Three surfaces have to be taken into account: the bubble surface, the free surface and the submerged part

of the hull of the floating structure or ship. Several problems arise in doing so. Firstly, the free surface needs very large

meshing in a 3-D configuration and this will greatly increase numerical calculations. Secondly, the free surface is in

contact with the structure. This not only can lead to numerical instabilities, but also a very complicated numerical

procedure has to be enacted to follow the movement of the contact line between the ship and the free surface with some

degree of robustness.

Several previous works have used the fact that the effect of a flat infinite solid fixed surface on an oscillating bubble at

a certain distance away from the surface can be modelled by using the mirror image method [see Zhang et al. (2001), for

example]. In these works, a (positive) image of the bubble is placed at the same distance behind the surface. In this way,

the solid surface itself needs not be modelled explicitly. A similar approach can be adopted for the free surface in the 3-

D computer code. The free surface, however, will act as a negative mirror. This approach will only be justified if the free

surface remains relatively flat during the evolution of the bubble (i.e. if no significant plume is created on the free

surface). A schematic picture of a typical ship structure is presented in Fig. 4(a). The parts of the ship above the

waterline can be neglected in the current model. In Fig. 4(b) the ship and the explosion bubble and their images above

the waterline are indicated. It seems advantageous in terms of numerical computation to divide the ship and its image
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Fig. 3. The plume height as a function of the initial distance from the free surface H0 for different values of d ¼ 0:0, 0.25 and 0.5;

� ¼ 500.

Fig. 4. (a) Picture of a typical ship. (b) Model of the submerged part of the ship S+, the explosion bubble (B+) and their images (S� and

B�) above the water line I. The rudder and propeller have been removed for simplicity.
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into three zones consisting of: nodes below the free surface (S+), nodes on the free surface (I) and nodes above the free

surface (S�). The explosion bubble is indicated with B+ and its image above the waterline with B� in Fig. 4(b). The

boundary integral equations can be written in this case as

cðyÞFðyÞ þ
Z

BþþB�þSþþS�þI

FðxÞ
qGðx; yÞ

qn
dS ¼

Z
BþþB�þSþþS�þI

Gðx; yÞUðxÞ dS. (23)

In this formulation, y is a fixed point and the integration variable x is located on the boundary of the problem. Eq.

(23) relates the potential F and the normal velocity U. c(y) corresponds to the solid angle when y is located on a

boundary of the problem. The Green function or kernel, G, is defined as

Gðx; yÞ ¼
1

x� y
�� �� . (24)
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The integration in (23) is carried out over the surface of the bubble (B+), its image (B�), the submerged surface of the

ship (S+), its image above the waterline (S�) and the contact line (or waterline: I). No meshing is required for the

free surface. The surface of the bubble and the ship are discretized using triangular elements (the nodes corresponding

to the corners of the triangle). A linear representation of the potential and the normal velocity is used. Integrating and

storing the results for each node in vector notation (the AS and BS are matrices, while the FS and US are vectors)

transforms (23) to

ASþSþ ASþS� ASþI ASþBþ ASþB�

AS�Sþ AS�S� AS�I AS�Bþ AS�B�

AISþ AIS� AII AIBþ AIB�

ABþSþ ABþS� ABþI ABþBþ ABþB�

AB�Sþ AB�S� AB�I AB�Bþ AB�B�

2
666666664

3
777777775
d

USþ

US�

UI

UBþ

UB�

2
666666664

3
777777775

¼

BSþSþ BSþS� BSþI BSþBþ BSþB�

BS�Sþ BS�S� BS�I BS�Bþ BS�B�

BISþ BIS� BII BIBþ BIB�

BBþSþ BBþS� BBþI BBþBþ BBþB�

BB�Sþ BB�S� BB�I BB�Bþ BB�B�

2
666666664

3
777777775
d

USþ

US�

UI

UBþ

UB�

2
666666664

3
777777775
. ð25Þ

The geometry of this problem is symmetrical with respect to the waterline z ¼ 0. Making use of this symmetry

property and noting that all the matrices A and B are only dependant on this geometry (and not on the potential or the

normal velocity), reveals that many matrices in the above equation are actually identical. So, ASþSþ ¼ AS�S� ,

ASþS� ¼ AS�Sþ , ASþI ¼ AS�I , ASþBþ ¼ AS�B� , ASþB� ¼ AS�Bþ , AISþ ¼ AIS� , AIBþ ¼ AIB� , ABþSþ ¼ AB�S� ,

ABþS� ¼ AB�Sþ , ABþI ¼ AB�I , ABþBþ ¼ AB�B� and ABþB� ¼ AB�Bþ . Similar relationships exist for the B matrices, for

example:BBþSþ ¼ BB�S� etc. The antisymmetric property of the potential problem leads to the following equalities:

USþ ¼ �US� , UBþ ¼ �UB� , UI ¼ 0, USþ ¼ �US� , UBþ ¼ �UB� and U I ¼ 0. The third row of (25) gives the identity

0 ¼ 0. The first and second row and the fourth and fifth row of (25) are identical, respectively. Therefore, the whole

system of equations can be reduced to

ASþSþ � ASþS�
� �

ASþBþ � ASþB�
� �

ABþSþ � ABþS�
� �

ABþBþ � ABþB�ð Þ

2
4

3
5d USþ

UBþ

" #

¼
BSþSþ � BSþS�
� �

BSþBþ � BSþB�
� �

BBþSþ � BBþS�
� �

BBþBþ � BBþB�ð Þ

2
4

3
5d USþ

UBþ

" #
. ð26Þ

If the structure does not move, USþ ¼ 0. Bringing the unknown parameters to the left hand side and the known

parameters to the right hand side, the final equation appears as

ASþSþ � ASþS�
� �

�BSþBþ þ BSþB�
� �

ABþSþ � ABþS�
� �

�BBþBþ þ BBþB�ð Þ

" #
d

USþ

UBþ

" #
¼
�ASþBþ þ ASþB�
� �

dUBþ

�ABþBþ þ ABþB�ð ÞdUBþ :
(27)

The diagonal terms of the matrices ASþSþ and ABþBþ can be obtained by taking 4p and subtracting the sum of all

other terms in the same row for the same surface; see Taib (1985), Blake et al. (1987) or Liu and Rudolphi (2000). A

further advantage is that there is no longer a need to calculate the solid angle c(y). This procedure can only be

performed for closed surfaces such as the bubble or the ship including its image. It may seem that there is no need to

calculate the matrices ASþI and ABþI , since these do not appear in (27). However, they are still needed in order to

calculate the diagonal terms of the matrices ASþSþ and ABþBþ . Similar results as obtained in (27) can probably be

obtained by choosing a different Green function,

Gðx; yÞ ¼
1

x� y
�� ��� 1

x� yi

�� �� (28)

with yi being the image point of y, with respect to the z ¼ 0 plane. However, the treatment of the singular terms of the

matrix would be more cumbersome, since the surface of the ship would no longer be a closed surface and the 4p



ARTICLE IN PRESS
E. Klaseboer et al. / Journal of Fluids and Structures 21 (2005) 395–412404
procedure as described above would no longer be valid. The calculation of the strongest singularities would therefore

have to be performed in a different way.

When the bubble enters its toroidal phase (after jet impact), a technique similar to the one described for the axial

symmetrical configuration is applied. Details of this method can be found in Zhang et al. (2001). As in its axial

symmetric counterpart a vortex ring is placed inside the bubble to take account of the circulation induced by the jet

impact. The potential is again divided into a part originating from the vortex ring and a remainder. The assumption

USþ ¼ 0 no longer applies in this situation; this velocity must now be assigned to a quantity equal but opposite to the

velocity induced by the vortex ring on the structure. The equivalent of (27) will therefore be slightly more complicated.

As a further note, one should mention that a grid-redistribution scheme (called the Elastic Mesh Technique by Wang

et al. 2003), has been applied at every time step on the bubble surface. This is done to avoid the nodes from clustering in

one particular region, while leading to sparseness of nodes in other areas of the bubble. The Elastic Mesh Technique has

also proven to be beneficial for the stability and speed of computation; previously nodes had to be added in the affected

sparse areas, thus increasing the size of the problem and the time taken to solve for the corresponding new matrices

increases.

It is important to investigate and ascertain when the above approximation with negative source images is valid and

the effect on the accuracy of the calculations. In Fig. 3, the plume height as a function of H0 is given for several values of

d. From Fig. 3 it is reckoned that for values of H0 greater than 1.0, the error incurred becomes increasingly limited, if the

free surface has been replaced by the above-described negative image method. In Section 3.2, it will be shown that the

minimum distance where the employment of the ‘negative mirror’ for the free surface in the present 3D code is still

feasible is H 0 ¼ 1:4. The simulations to evaluate the flow physics of the bubble in the presence of a free surface and a

floating structure are all carried out with a H 041:5 (see Section 4).
3.2. Comparison of the new model with the axial symmetrical model

It is important to test and verify the assembled 3-D code. It would be interesting to quantify the effect of the free

surface on the bubble dynamics via the model employed in the 3-D code, as opposed to the axisymmetric code where the

free surface is modelled explicitly. Unfortunately, no theoretical results are available to compare these results against. In

order to do so, a bubble is initiated at a depth of H 0 ¼ 1:337 with a strength of � ¼ 395:7 (incidently this corresponds to

a TNT charge of 100 kg at a depth of 8.0m). In this instance, gravity is neglected. The number of (3-D) nodes used on

the bubble surface is 642 and the corresponding number of elements is 1280. The computed bubble shapes are shown in

Fig. 5; Figs. 5(a)–(c) pertain to the 3-D simulation while Figs. 5(d)–(f) were calculated via the axisymmetrical code. The

(imaginary) free surface is also indicated by a solid horizontal line in the 3-D simulations. For the 3-D simulations, the

bubble starts as a spherical bubble (t0 ¼ 0:000), then grows rapidly before it reaches the maximum volume (Fig. 5(a)) at

about t0 ¼ 0:820 (the corresponding dimensional bubble would have reached a radius of about 6.0m). The bubble then

starts contracting and at t0 ¼ 1:468 clearly a downwards directed jet develops in the upper part of the bubble (Fig. 5(b)).

At t0 ¼ 1:586 a very peculiar flat jet develops (Fig. 5(c)). The bubble as a whole has moved downwards at the end of the

simulation compared to the initial location. The results for a similar simulation with the axial symmetrical code

(incorporating explicitly the free surface) are also given in Fig. 5(d)–(f). The bubble reaches its maximum volume at

t0 ¼ 0:860 (Fig. 5(d)), this is very close to the value calculated for the 3-D code (0.820). At t0 ¼ 1:626, (Fig. 5(f)), the
same peculiar jet shape is observed as in the 3-D simulation at t0 ¼ 1:586. The bubble also moves slightly downwards as

for its 3-D counterpart. It may be noted, that the elevation of the free surface is still considerable (about 0.34) and is not

quite negligible as yet. Even then, the bubble shapes are still reasonably similar between the two simulations. This

provides the confidence that, even in these circumstances where the bubble is placed quite close to the free surface, the

main physics of the bubble behaviour are still preserved.

Another example with similar parameters but with the bubble being placed deeper at H 0 ¼ 3:0 was also considered

(results not shown here). The jet tip was more rounded in this case. Both the 3-D and axial symmetrical results were

very similar to those in the previous case. The times at which similar bubble shapes are observed correspond very well; a

difference of less than 2% in time is found between the axisymmetric and 3-D simulations. The maximum elevation of

the free surface is found to be 0.073 at t0 ¼ 0:872 (this corresponds well with Fig. 3). It should be mentioned that the

gravity effect should be considered in an actual underwater explosion (though it may not be necessary for other

simulations involving much smaller sized bubbles). Therefore, similar simulations but with the inclusion of the

buoyancy parameter d were also investigated. For example a simulation with H 0 ¼ 1:5, d ¼ 0:30 and the other

parameters similar to those of Fig. 5, yielded an upwards jet for both the 3-D and axial symmetrical models (results not

shown here) which impacted on the upper bubble surface at t0 ¼ 1:658 for the 3-D simulation and at t0 ¼ 1:678 for the

axisymmetrical simulation. The maximum elevation of the free surface for the axisymmetrical code was 0.318 at
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Fig. 5. Comparison of 3-D ((a)–(c)) and axially symmetric simulation ((d)–(f)) of a single bubble below a free surface with parameters

� ¼ 395:7, d ¼ 0:0 (no gravity) and H 0 ¼ 1:337. The 3-D images (t0 ¼ 0:820, 1.468 and 1.586) are placed on top of their axisymmetric

counterparts (t0 ¼ 0:860, 1.483 and 1.626).
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t0 ¼ 0:95. Another test with H 0 ¼ 3:0 and d ¼ 0:3 also gave similar results for both the 3-D and axisymmetrical models

(results not shown here). The maximum free surface elevation for the axisymmetrical code was 0.082 and was reached at

t0 ¼ 0:99. Through the extensive tests in the above-mentioned cases and others, and comparing the results of the 3-D

code with the results obtained with the axisymmetrical code, it is believed that the assembled 3-D code using the

negative image method is describing reasonably well the true dynamics of a bubble.

Another feature worth noting is that from Fig. 5, had a smaller H0 like say 1.3 being considered, the bubble would

have expanded beyond the z ¼ 0 axis at the first maximum volume (thus intersecting with its own image and hence

leading to numerical problems and/or incorrect results). Therefore, conservatively we have stated that a minimum

H 0 ¼ 1:4 should be imposed for the present ‘negative’ image method in the 3-D code to work reasonably well and

accurately.

There is no upper limit for H0, though the influence of the free surface becomes negligible for very large values of H0

(420). In that case there will no longer be a free surface induced downwards jet. Either gravity will produce a jet or the

bubble will remain spherically symmetric (for small values of d).
4. Bubble dynamics near free surface and floating structure

In this section, the negative image model incorporated in the 3-D code is used to simulate the behaviour of an

explosion bubble in the vicinity of both a free surface and a ship. The developed framework with the ‘negative’ image

method can handle flexible and/or mobile structures. However, the ship in this work is assumed to be rigid and

immobile. In Fig. 6 the mesh of a ship is shown as it is used in the subsequent simulations. In Fig. 6(a) the total ship is

shown (front and back view). The part that is submerged under water (the mesh above the waterline is neglected as

shown in Fig. 6(b)) has 3199 nodes and 6240 triangular elements. The ship has a length of almost 100m as it stretches

from x ¼ 53:0 (front of the ship) to x ¼ �51:1m (back of the ship). The plane y ¼ 0 is a plane of symmetry coinciding
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Fig. 6. (a) Front and back view of the mesh of the submerged portion of a typical ship for use in the numerical calculations. (b) Side

views and top view of the ship model; front, middle and back section. The free surface is located at the top of the ship model (z ¼ 0).
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with the centreline of the ship. The largest width of the ship is 14.0m (from y ¼ �7:0 to y ¼ 7:0). The intersection of

z ¼ 0:0m and the ship is located at the waterline. The bottom of the ship is situated at z ¼ 4:70m.

In Case 1, an initial bubble based on an explosive charge of 100 kg is placed exactly below the centre of the ship (see

Fig. 7(a) and Fig. 7(g)) at a depth of 12.0m. The maximum bubble radius is Rm ¼ 5:60m at this depth. The

dimensionless stand-off distance (i.e. the smallest distance between the ship and the explosive) is 1.30. The other

dimensionless parameters are � ¼ 334:9, H 0 ¼ 2:14 and d ¼ 0:251. The initial bubble resulting from the explosion can be

observed in Fig. 7(a). The maximum bubble size occurs at t0 ¼ 0:965; in Fig. 7(b) the bubble shape is depicted near this

time at t0 ¼ 0:917. The bubble grows very fast initially, but stays for a relatively long time in the near-maximum size. An

upwards directed jet is developing, as can be observed in Fig. 7(c) (t0 ¼ 1:801). The jet impacts on the upper part of the

bubble surface at t0 ¼ 1:820. In Fig. 7(d), the resulting toroidal bubble shape is shown at t0 ¼ 1:843. A vortex ring has

been placed in the interior of the bubble and it is depicted as a thick bar in the same Fig. 7(d). Next, the bubble

continues to contract in volume until it reaches its minimum at t0 ¼ 2:094. In Fig. 7(e), the shape of the bubble near this

minimum volume is shown. It assumes a kind of ‘mushroom’ shape. After reaching its minimum volume (which is larger

than the volume at t0 ¼ 0 due to energy considerations), the bubble starts its second expansion phase as shown in

Fig. 7(f). The bubble has moved upwards during the whole process and is almost touching the ship’s bottom at the end

of the simulation. In Fig. 7, the dimensional times are also indicated for reference purposes; Fig. 7(f) corresponds to a

dimensional time of t ¼ 0:84 s.
The next case, Case 2, is given in Fig. 8. The same charge of 100 kg TNT is now placed at a location of 8.0m besides

the same immobile ship. The bubble is deliberately placed nearer to the free surface at a depth of 9.0m, in order to see

the effects of the free surface on the bubble dynamics. The x-location of the explosive is not changed (i.e. Fig. 7(g) is still

valid). The dimensionless parameters are: � ¼ 378:3, H 0 ¼ 1:53 and d ¼ 0:304. These parameters are slightly different

from those presented in Fig. 7. The maximum bubble radius is almost similar to the previous Case 1 and is Rm ¼ 5:88m.

The effects of the free surface are expected to be larger in this case, because of the closer proximity. The bubble starts

growing very rapidly again and reaches its maximum size at t0 ¼ 0:912 as depicted in Fig. 8(b). The stand off distance is
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Fig. 7. Case 1: Behaviour of an explosion bubble near a ship (front view, explosive equivalent to 100 kg TNT placed 12.0m below free

surface, exactly underneath ship). The dimensionless parameters are � ¼ 334:9, H 0 ¼ 2:14 and d ¼ 0:251. Bubble shapes at (a) t0 ¼ 0:0
or t ¼ 0:0 s, (b) t0 ¼ 0:917 or t ¼ 0:35 s, (c) t0 ¼ 1:801 or t ¼ 0:68 s, (d) t0 ¼ 1:843 or t ¼ 0:70 s, (e) t0 ¼ 2:052 or t ¼ 0:78 s, (f) t0 ¼ 2:218
or t ¼ 0:84 s and (g) side view at t0 ¼ 0:0.
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smaller than the previous Case 1 and the bubble can be seen to wrap around the hull of the ship. Numerical instabilities

can occur when the nodes of the ship and the bubble approach each other too closely. Therefore, the bubble is not

allowed to expand too near to the surface of the ship. The minimum dimensionless distance the bubble is allowed to

approach the surface is set at 0.05. It is found that the overall dynamics and behaviour of the bubble is not very sensitive

to the exact value of this minimum distance (not shown). Following the work of Rungsiyaphornrat et al. (2003), a check

on the associated Reynolds number based on a typical velocity in the gap and the minimum distance for the gap size

reveals a quantity always much larger than O (1). This implies that viscous effects, if any, are completely overshadowed

by the inertial effects pertaining to the underwater explosion simulations under consideration. In Fig. 8(c), a jet

originating from the bottom part of the bubble can be seen to start developing. However, at the same time an
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Fig. 8. Case 2: Behaviour of an explosion bubble near a ship (front view, explosive equivalent to 100 kg TNT placed at 9.0m below the

free surface and 8.0m besides the axis of symmetry of the ship). The dimensionless parameters are: � ¼ 378:3, H 0 ¼ 1:53 and d ¼ 0:304.
Bubble shapes at (a) t0 ¼ 0:0 or t ¼ 0:0 s, (b) t0 ¼ 0:63 or t ¼ 0:27 s, (c) t0 ¼ 1:674 or t ¼ 0:72 s, (d) t0 ¼ 1:708 or t ¼ 0:73 s, (e) t0 ¼ 1:90
or t ¼ 0:82 s, (f) t0 ¼ 2:37 or t ¼ 1:02 s.
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indentation occurs at the upper part of the bubble away from the free surface. The jet in the lower part is largely due to

the effect of gravity. The indentation on top of the bubble is the beginning of a downwards directed jet induced by the

free surface. This latter jet does not develop completely, since the upwards directed jet impacts earlier on the upper part

of the bubble surface near the ship (Fig. 8(d)) and a toroidal bubble is being created. At t0 ¼ 1:90, the bubble reaches its
smallest volume (Fig. 8(e)). At the same time, the bubble’s centre of gravity has moved towards the ship due to the

attraction of a bubble towards a solid structure and the influence of buoyancy. In Fig. 8(f) the bubble has started to

grow again. The series of events in Fig. 8 indicate that a very complex interaction exists for the bubble dynamics as it is

affected by gravity, the repulsion of the free surface and the attraction towards the structure. The bubble reaches its

minimum volume earlier than in the previous Case 1 (t0 ¼ 1:90 versus t0 ¼ 2:05, respectively); this is possibly due to the

closer proximity of the free surface. Again, the dimensional times are also indicated for reference purposes.

From a flow physics point of view, an even more interesting Case 3 is shown in Fig. 9. In Case 3, the explosion bubble

is again placed at a depth of 9.0m, but at an even larger horizontal distance from axis of the ship at 15.0m (see

Fig. 9(a)). The stand-off distance is now comparable to Case 1. The dimensionless parameters are � ¼ 378:3, H 0 ¼ 1:53
and d ¼ 0:304 (similar to Case 2). The influence of the attraction of the ship is expected to be less in this case. The

maximum volume of the bubble is reached at a dimensionless time of t0 ¼ 0:883; this is earlier than in Cases 1 and 2

(probably because the influence of the free surface is even greater in this case). The bubble is still more or less spherical

at this instance (see Fig. 9(b)). An upwards directed jet develops (Fig. 9(c)) at the bottom of the bubble. At the same

time the upper part of the bubble starts moving downwards slightly (this is interpreted as the beginning of a downwards

jet). However, as in Case 2, the upwards jet impacts on the upper bubble surface before the downwards free-surface

induced jet has the opportunity to develop further. The resulting toroidal bubble of Fig. 9(d) looks fairly symmetrical,

since the gravity jet is directed almost straight upwards (with the influence of the presence of the ship weaker on

comparing to Case 2). This symmetry is quickly lost and the right portion of the bubble becomes smaller and smaller

compared to the left portion (Fig. 9(e)). The bubble reaches its minimum volume at t0 ¼ 1:738 and starts growing again

(Fig. 9(f)). During this stage, a very interesting phenomenon can be observed. This is best seen by zooming in on the

bubble just after the jet impact at times ranging from t0 ¼ 1:729 to t0 ¼ 1:775 as shown in Fig. 10. Very soon after the jet
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Fig. 9. Case 3: Behaviour of an explosion bubble near a ship (front view, explosive equivalent to 100 kg TNT placed at 9.0m below the

free surface and 15.0m besides the axis of symmetry of the ship). The dimensionless parameters are the same as in Case 2. Bubble

shapes at (a) t0 ¼ 0:0 or t ¼ 0:0 s, (b) maximum volume; t0 ¼ 0:875 or t ¼ 0:38 s, (c) t0 ¼ 1:59 or t ¼ 0:69 s, (d) t0 ¼ 1:643 or t ¼ 0:71 s;
(e) zoom-in of the minimum volume at t0 ¼ 1:738 or t ¼ 0:75 s, (f) zoom-in at t0 ¼ 1:759 or t ¼ 0:758 s.

Fig. 10. Case 3: Close-up view of the turning secondary ‘jet’ just after jet impact from t0 ¼ 1:729 to t0 ¼ 1:775 (corresponds to

dimensional times between t ¼ 0:738 s and t ¼ 0:758 s). Bubble shapes at: (a) t0 ¼ 1:729, (b) t0 ¼ 1:733, (c) t0 ¼ 1:736, (d) t0 ¼ 1:739, (e)
t0 ¼ 1:743, (f) t0 ¼ 1:748, (g) t0 ¼ 1:753, (h) t0 ¼ 1:759; also corresponding to Fig. 9(f) and (i) t0 ¼ 1:775.
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impact, the bubble assumes a very flat shape as in Fig. 10(a). As noted, the right portion of the bubble contracts much

more rapidly than the left portion. At the same time, the bubble topology shows that an indentation on the bubble

surface of the right portion can be observed. This is indicated with an arrow in Fig. 10(b). This indentation may serve as

the beginning of the formation of another (secondary) jet; it is initially directed towards the ship. However, the first

upwards directed jet due to buoyancy still has a very large influence on the flow field. The liquid in the lower

neighbourhood of the bubble is transported through the centre of the toroidal bubble towards the region above the

bubble. The indentation also moves towards the centre of the toroidal bubble (Figs. 10(d)–(f)). In Figs. 10(g) and (h) the

indentation has moved from the right portion to the bottom portion of the bubble. At about this time the bubble has

reached its minimum volume and starts growing again. As the bubble grows further (Fig. 10(i)), this secondary ‘jet’ has
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almost completely disappeared. The sequence of events described is interpreted as the beginning of the formation of a

jet towards the ship; however, this ‘rotating jet’ is transported by the main flow and does not have enough momentum

to develop further. Nevertheless, the bubble as a whole has been moved considerably towards the structure in this short

period of time. Case 3 shows very clearly the complex interactions that can occur during the oscillation of a bubble near

a structure and a free surface in the presence of buoyancy effects.

Another example (Case 4) is given in Fig. 11. The same explosive charge of 100 kg is now positioned at the front of

the ship at x ¼ 54:0, y ¼ 0:0, z ¼ 9:0m. The dimensionless parameters are the same as in Case 2. In Fig. 11(a) the initial

bubble is shown. At t0 ¼ 0:861 the bubble reaches its maximum shape and wraps around the front part of the ship. In

Fig. 11(c) an upwards directed jet can be seen to develop originating from the bottom of the bubble, an indentation of

the top part can also be observed (due to the influence of the free surface). At t0 ¼ 1:663 the jet impacts obliquely,

directed towards the front part of the ship. In Figs. 11(e) and (f) the bubble has reached its toroidal shape. It shrinks

further and at the same time moves further below the ship. In Fig. 11(f) a strange lobe can be seen at the left bottom

part of the bubble. A zoom-in is given in Fig. 11(h). This lobe could be interpreted as the formation of a second jet.

However, this jet does not develop further and the lobe disappears after the bubble has reached its minimum volume

and starts growing again (Fig. 11(g)). In Case 4, the bubble is clearly attracted towards the ship (compare Fig. 11(a)

with (g)). Other simulations with similar bubbles located at x ¼ 56m and x ¼ 58m (as in Case 4, keeping the

other parameters the same, results not shown here) have been performed. In those cases, the charge is located too far

from the ship and the bubble exhibits a behaviour very similar to a similar bubble near a free surface without the

presence of a ship.

Finally, it may be mentioned that the pressure on the hull of the ship has been calculated (not shown here).

As expected, the pressure approaches the atmospheric pressure when z approaches 0. The pressure on the hull

just after the explosion is highest at the location closest to the explosive charge. When the bubble reaches its

maximum size, the pressure becomes much less then the atmospheric pressure (as well as the pressure inside the bubble).

The jet impact generates another pressure peak near the region of the jet impact. The results are not depicted here,

since this article is mainly dealing with the dynamics of the bubble and less with the influence of the explosion on

the ship.
5. Discussion and conclusion

As shown above, the behaviour of a bubble in the vicinity of both a fixed solid structure and a free surface can be

quite complicated. This is even more so, when gravity effects are nonnegligible. A ‘‘new model’’ was developed based on

the fact that the free surface can be interpreted as a negative mirror under certain circumstances. This is only valid when

the free surface remains relatively flat during the evolution of the bubble. In that case the free surface no longer needs to

be modelled explicitly. Several tests have been performed to ensure that the new model gives comparable results to those

obtained from a previous axially symmetric model. In the examples shown, all three effects; i.e. proximity to the solid

surface, proximity to the free surface and buoyancy, play their respective important roles. A bubble placed at ‘large’

distances from the free surface and the structure will only exhibit an upwards jet due to gravity. The distance can be

considered ‘large’ for dimensionless depths greater then H 0 ¼ 2:0 for the case under investigation with relatively large

values of d (d�0.3). Bubbles placed near a free surface, but without a solid structure were also considered. An excellent

agreement with the results of an existing axial symmetrical code was obtained (the latter having taken into

consideration both the movement and interaction of the bubble with the free surface). The lower limit of H0 that can be

used with the new model is H 0 ¼ 1:4. Taking smaller values of H0 may result in the bubble and its image crossing each

other, which in turn will lead to numerical failure. For cases of H0 smaller than 1.4 the present negative image model

should be replaced with a model that takes into account the movement of the free surface. There are no limits for the

maximum depth of H0 in the current model, though it is expected that for very large H0 (420) the free surface will

hardly have any influence on the dynamics of the bubble.

A bubble placed near a ship will, in many cases, develop a jet directed towards this ship. This jet can be very powerful

and is capable of destroying the ship (typical jet velocities can be 100 m/s or larger). Depending on the exact location of

the bubble, the proximity to the free surface and the influence of gravity, the jet may impact on the structure or miss it

completely. Therefore a thorough knowledge of the bubble dynamics can mean the difference between the survival or

destruction of a ship.

It might be noted here that the theoretical framework developed is not limited to applications associated with

underwater explosions. Though the discussions in this article are limited to that particular area, the same framework

can also be used to simulate much smaller bubbles (in that case the influence of buoyancy will be greatly reduced).
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Fig. 11. Case 4: Behaviour of an explosion bubble near a ship (side view, explosive equivalent to 100 kg TNT placed at x ¼ 54:0,
y ¼ 0:0, z ¼ 9:0m). The dimensionless parameters are the same as in Case 2. Bubble shapes at (a) t0 ¼ 0:0 or t ¼ 0:0 s, (b) maximum

volume; t0 ¼ 0:861 or t ¼ 0:368 s, (c) t0 ¼ 1:630 or t ¼ 0:694 s, (d) jet impact at t0 ¼ 1:663 or t ¼ 0:710 s, (e) t0 ¼ 1:707 or t ¼ 0:729 s, (f)
around the minimum volume t0 ¼ 1:740 or t ¼ 0:743 s, (g) t0 ¼ 1:754 or t ¼ 0:749 s; (h) a zoom-in of (f).
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